# Multiplication patterns Worksheet

Mr Ward



### Warm up - Missing values

Can you complete the calculations?

$$7 \times 1 = 28$$
  $40 = 1 \times 8$   $6 \times 9 = 1 \times 7$ 

$$6 \times 9 =$$

$$7 \times 1 = 56$$

$$\begin{bmatrix} x & 6 = 72 & 7x \end{bmatrix} = 56 & 121 = 11x \end{bmatrix} = \begin{bmatrix} 9 & x & 9 = 1 \end{bmatrix}$$

$$9 \times 9 =$$



### Using a counting stick to show times tables

# Shading 10 x 10 grids





Shade all multiples of 6 in the grid

Continue beyond 10 x 6 = 60

What patterns do you notice?



### Using a counting stick to show times tables

Shading 10 x 10 grids





Shade all multiples of 12 in the grid

What patterns do you notice?



### Talk Task - Exploring multiplication patterns

- 1. Shade in the  $10 \times 10$  grids for the 2x, 4x and 8x tables
- 2. Reflect on the following questions:

What do you notice? What's the same? What patterns exist?

#### 2x multiplication table



#### 4x multiplication table



#### 8x multiplication table





### Identifying multiplication patterns.

- 1. Shade in the 10 x 10 grids for the 3x, 7x, 11x and 12x tables
- 2. Compare the different multiplication tables
- 3. Consider the questions already asked such as:

#### What do you notice? What's the same? What patterns exist?





### Identifying multiplication patterns.

3x table



7x table





## Identifying multiplication patterns.



### 12x table





# Challenge Slide

How many different ways can you complete the multiplications shown below?



